Research Synthesis Methods

Table of Contents

Volume 10 Issue 1 (March 2019)

1-152

Issue Information

Issue Information

  • Author:
  • Pub Online: Mar 19, 2019
  • DOI: 10.1002/jrsm.1306 (p 1-1)

COMPUTATIONAL TOOLS AND METHODS

Features and functioning of Data Abstraction Assistant, a software application for data abstraction during systematic reviews

  • Author: Jens Jap, Ian J. Saldanha, Bryant T. Smith, Joseph Lau, Christopher H. Schmid, Tianjing Li
  • Pub Online: Nov 19, 2018
  • DOI: 10.1002/jrsm.1326 (p 2-14)

Historical Perspectives

Some reflections on combining meta‐analysis and structural equation modeling

  • Author: Mike W.‐L. Cheung
  • Pub Online: Sep 21, 2018
  • DOI: 10.1002/jrsm.1321 (p 15-22)

Research Articles

Methods to calculate uncertainty in the estimated overall effect size from a random‐effects meta‐analysis

  • Author: Areti Angeliki Veroniki, Dan Jackson, Ralf Bender, Oliver Kuss, Dean Langan, Julian P.T. Higgins, Guido Knapp, Georgia Salanti
  • Pub Online: Oct 09, 2018
  • DOI: 10.1002/jrsm.1319 (p 23-43)

How can additional secondary data analysis of observational data enhance the generalisability of meta‐analytic evidence for local public health decision making?

  • Author: Dylan Kneale, James Thomas, Alison O'Mara‐Eves, Richard Wiggins
  • Pub Online: Oct 21, 2018
  • DOI: 10.1002/jrsm.1320 (p 44-56)

Testing for funnel plot asymmetry of standardized mean differences

  • Author: James E. Pustejovsky, Melissa A. Rodgers
  • Pub Online: Jan 08, 2019
  • DOI: 10.1002/jrsm.1332 (p 57-71)

Usage of automation tools in systematic reviews

  • Author: A.J. Altena, R. Spijker, S.D. Olabarriaga
  • Pub Online: Jan 22, 2019
  • DOI: 10.1002/jrsm.1335 (p 72-82)

A comparison of heterogeneity variance estimators in simulated random‐effects meta‐analyses

  • Author: Dean Langan, Julian P.T. Higgins, Dan Jackson, Jack Bowden, Areti Angeliki Veroniki, Evangelos Kontopantelis, Wolfgang Viechtbauer, Mark Simmonds
  • Pub Online: Sep 06, 2018
  • DOI: 10.1002/jrsm.1316 (p 83-98)

Conducting gene set tests in meta‐analyses of transcriptome expression data

  • Author: Robin Kosch, Klaus Jung
  • Pub Online: Feb 07, 2019
  • DOI: 10.1002/jrsm.1337 (p 99-112)

Automated methods to test connectedness and quantify indirectness of evidence in network meta‐analysis

  • Author: Howard Thom, Ian R. White, Nicky J. Welton, Guobing Lu
  • Pub Online: Dec 04, 2018
  • DOI: 10.1002/jrsm.1329 (p 113-124)

The use of mathematical modeling studies for evidence synthesis and guideline development: A glossary

  • Author: Teegwendé V. Porgo, Susan L. Norris, Georgia Salanti, Leigh F. Johnson, Julie A. Simpson, Nicola Low, Matthias Egger, Christian L. Althaus
  • Pub Online: Jan 08, 2019
  • DOI: 10.1002/jrsm.1333 (p 125-133)

A flexible approach to identify interaction effects between moderators in meta‐analysis

  • Author: Xinru Li, Elise Dusseldorp, Jacqueline J. Meulman
  • Pub Online: Jan 09, 2019
  • DOI: 10.1002/jrsm.1334 (p 134-152)

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.