Applied Stochastic Models in Business and Industry

A random forest application to contact‐state classification for robot programming by human demonstration

Journal Article

This paper addresses the non‐parametric estimation of the stochastic process related to the classification problem that arises in robot programming by demonstration of compliant motion tasks. Robot programming by demonstration is a robot programming paradigm in which a human operator demonstrates the task to be performed by the robot. In such demonstration, several observable variables, such as velocities and forces can be modeled, non‐parametrically, in order to classify the current state of a contact between an object manipulated by the robot and the environment in which it operates. Essential actions in compliant motion tasks are the contacts that take place, and therefore, it is important to understand the sequence of contact states made during a demonstration, called contact classification. We propose a contact classification algorithm based on the random forest algorithm. The main advantage of this approach is that it does not depend on the geometric model of the objects involved in the demonstration. Moreover, it does not rely on the kinestatic model of the contact interactions. The comparison with state‐of‐the‐art contact classifiers shows that random forest classifier is more accurate. Copyright © 2015 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.