Quality and Reliability Engineering International

Combined Application of Shewhart and Cumulative Sum R Chart for Monitoring Process Dispersion

Journal Article

This study analyzes the performance of combined applications of the Shewhart and cumulative sum (CUSUM) range R chart and proposes modifications based on well‐structured sampling techniques, the extreme variations of ranked set sampling, for efficient monitoring of changes in the process dispersion. In this combined scheme, the Shewhart feature enables quick detection of large shifts from the target standard deviation while the CUSUM feature takes care of small to moderate shifts from the target value. We evaluate the numerical performance of the proposed scheme in terms of the average run length, standard deviation of run length, the average ratio average run length, and average extra quadratic loss. The results show that the combined scheme can detect changes in the process that were small or large enough to escape detection by the lone Shewhart R chart or CUSUM R chart, respectively. We present a comparison of the proposed schemes with several dispersion charts for monitoring changes in process variability. The practical application of the proposed scheme is demonstrated using real industrial data. Copyright © 2014 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.