Quality and Reliability Engineering International

A New Synthetic Exponentially Weighted Moving Average Control Chart for Monitoring Process Dispersion

Journal Article

Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.