Quality and Reliability Engineering International

Phase II Shewhart‐type Control Charts for Monitoring Times Between Events and Effects of Parameter Estimation

Journal Article

Monitoring times between events (TBE) is an important aspect of process monitoring in many areas of applications. This is especially true in the context of high‐quality processes, where the defect rate is very low, and in this context, control charts to monitor the TBE have been recommended in the literature other than the attribute charts that monitor the proportion of defective items produced. The Shewhart‐type t‐chart assuming an exponential distribution is one chart available for monitoring the TBE. The t‐chart was then generalized to the tr‐chart to improve its performance, which is based on the times between the occurrences of r (≥1) events. In these charts, the in‐control (IC) parameter of the distribution is assumed known. This is often not the case in practice, and the parameter has to be estimated before process monitoring and control can begin. We propose estimating the parameter from a phase I (reference) sample and study the effects of estimation on the design and performance of the charts. To this end, we focus on the conditional run length distribution so as to incorporate the ‘practitioner‐to‐practitioner’ variability (inherent in the estimates), which arises from different reference samples, that leads to different control limits (and hence to different IC average run length [ARL] values) and false alarm rates, which are seen to be far different from their nominal values. It is shown that the required phase I sample size needs to be considerably larger than what has been typically recommended in the literature to expect known parameter performance in phase II. We also find the minimum number of phase I observations that guarantee, with a specified high probability, that the conditional IC ARL will be at least equal to a given small percentage of a nominal IC ARL. Along the same line, a lower prediction bound on the conditional IC ARL is also obtained to ensure that for a given phase I sample, the smallest IC ARL can be attained with a certain (high) probability. Summary and recommendations are given. Copyright © 2014 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.