Detecting clinically meaningful biomarkers with repeated measurements: An illustration with electronic health records

Journal Article

  • Author(s): Benjamin A. Goldstein, Themistocles Assimes, Wolfgang C. Winkelmayer, Trevor Hastie
  • Article first published online: 04 Feb 2015
  • DOI: 10.1111/biom.12283
  • Read on Online Library
  • Subscribe to Journal


Data sources with repeated measurements are an appealing resource to understand the relationship between changes in biological markers and risk of a clinical event. While longitudinal data present opportunities to observe changing risk over time, these analyses can be complicated if the measurement of clinical metrics is sparse and/or irregular, making typical statistical methods unsuitable. In this article, we use electronic health record (EHR) data as an example to present an analytic procedure to both create an analytic sample and analyze the data to detect clinically meaningful markers of acute myocardial infarction (MI). Using an EHR from a large national dialysis organization we abstracted the records of 64,318 individuals and identified 4769 people that had an MI during the study period. We describe a nested case‐control design to sample appropriate controls and an analytic approach using regression splines. Fitting a mixed‐model with truncated power splines we perform a series of goodness‐of‐fit tests to determine whether any of 11 regularly collected laboratory markers are useful clinical predictors. We test the clinical utility of each marker using an independent test set. The results suggest that EHR data can be easily used to detect markers of clinically acute events. Special software or analytic tools are not needed, even with irregular EHR data.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.