Oxford Bulletin of Economics and Statistics

On the Applicability of the Sieve Bootstrap in Time Series Panels

Journal Article


In this article, we investigate the validity of the univariate autoregressive sieve bootstrap applied to time series panels characterized by general forms of cross‐sectional dependence, including but not restricted to cointegration. Using the final equations approach we show that while it is possible to write such a panel as a collection of infinite order autoregressive equations, the innovations of these equations are not vector white noise. This causes the univariate autoregressive sieve bootstrap to be invalid in such panels. We illustrate this result with a small numerical example using a simple DGP for which the sieve bootstrap is invalid, and show that the extent of the invalidity depends on the value of specific parameters. We also show that Monte Carlo simulations in small samples can be misleading about the validity of the univariate autoregressive sieve bootstrap. The results in this article serve as a warning about the practical use of the autoregressive sieve bootstrap in panels where cross‐sectional dependence of general form may be present.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.