Journal of Time Series Analysis


Journal Article

We propose a new volatility model, which is called the mixture memory generalized autoregressive conditional heteroskedasticity (MM‐GARCH) model. The MM‐GARCH model has two mixture components, of which one is a short‐memory GARCH and the other is the long‐memory fractionally integrated GARCH. The new model, a special ARCH( ∞ ) process with random coefficients, possesses both the properties of long‐memory volatility and covariance stationarity. The existence of its stationary solution is discussed. A dynamic mixture of the proposed model is also introduced. Other issues, such as the expectation–maximization algorithm as a parameter estimation procedure, the observed information matrix, which is relevant in calculating the theoretical standard errors, and a model selection criterion, are also investigated. Monte Carlo experiments demonstrate our theoretical findings. Empirical application of the MM‐GARCH model to the daily S&P 500 index illustrates its capabilities.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.