Journal of Time Series Analysis

MULTIVARIATE LIMIT THEOREMS IN THE CONTEXT OF LONG‐RANGE DEPENDENCE

Journal Article

We study the limit law of a vector made up of normalized sums of functions of long‐range dependent stationary Gaussian series. Depending on the memory parameter of the Gaussian series and on the Hermite ranks of the functions, the resulting limit law may be (a) a multi‐variate Gaussian process involving dependent Brownian motion marginals, (b) a multi‐variate process involving dependent Hermite processes as marginals or (c) a combination. We treat cases (a) and (b) in general and case (c) when the Hermite components involve ranks 1 and 2. We include a conjecture about case (c) when the Hermite ranks are arbitrary, although the conjecture can be resolved in some special cases.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.