Research Synthesis Methods

Confidence intervals for the between‐study variance in random effects meta‐analysis using generalised Cochran heterogeneity statistics

Journal Article

Statistical inference is problematic in the common situation in meta‐analysis where the random effects model is fitted to just a handful of studies. In particular, the asymptotic theory of maximum likelihood provides a poor approximation, and Bayesian methods are sensitive to the prior specification. Hence, less efficient, but easily computed and exact, methods are an attractive alternative. Here, methodology is developed to compute exact confidence intervals for the between‐study variance using generalised versions of Cochran's heterogeneity statistic. If some between‐study is anticipated, but it is unclear how much, then a pragmatic approach is to use the reciprocals of the within‐study standard errors as weights when computing the confidence interval. © 2013 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.