Canadian Journal of Statistics

Adaptive clinical trial designs to detect interaction between treatment and a dichotomous biomarker

Journal Article

Abstract

Biomarkers play a crucial role in the design and analysis of clinical trials for personalized medicine. One major goal of these trials is to derive an optimal treatment scheme based on each patient's biomarker level. Although completely randomized trials may be employed, a more efficient design can be attained when patients are adaptively allocated to different treatments throughout the trial using biomarker information. Therefore, we propose a new adaptive allocation method based on using multiple regression models to study treatment–biomarker interactions. We show that this perspective simplifies the derivation of optimal allocations. Moreover, when implemented in real clinical trials, our method can consolidate all the covariates which may not be related to the treatment–biomarker interaction for a joint analysis. Our general idea can be applied to diverse models to derive optimal allocations. Simulation results show that both the optimal allocation and the proposed design can lead to a more efficient trial. The Canadian Journal of Statistics 41: 525–539; 2013 © 2013 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.