Algorithms for DEDICOM: acceleration, deceleration, or neither?

Journal Article


Takane's original algorithm for DEDICOM (DEcomposition into DIrectional COMponents) was proposed more than two decades ago. There have been a couple of significant developments since then: Kiers et al.'s modification to ensure monotonic convergence of the algorithm, and Jennrich's recommendation to use the modified algorithm only when Takane's original algorithm violates the monotonicity. In this paper, we argue that neither of these modifications is essential, drawing a close relationship between Takane's algorithm and the simultaneous power method for obtaining dominant eigenvalues and vectors of a symmetric matrix. By ignoring monotonicity, we can develop a much more efficient algorithm by simple modifications of Takane's original algorithm, as demonstrated in this paper. More specifically, we incorporate the minimum polynomial extrapolation (MPE) method to accelerate the convergence of Takane's algorithm, and show that it significantly cuts down the computation time. Copyright © 2009 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.