Canadian Journal of Statistics

Positive quadrant dependence testing and constrained copula estimation

Journal Article


Positive quadrant dependence is a specific dependence structure that is of practical importance in for example modelling dependencies in insurance and actuarial sciences. This dependence structure imposes a constraint on the copula function. The interest in this paper is to test for positive quadrant dependence. One way to assess the distribution of the test statistics under the null hypothesis of positive quadrant dependence is to resample from a constrained copula. This requires constrained estimation of a copula function. We show that this use of resampling under a constrained copula improves considerably the power performance of existing testing procedures. We propose two resampling procedures, one based on a parametric constrained copula estimation and one relying on nonparametric estimation of a positive quadrant dependence copula, and discuss their properties. The finite‐sample performances of the resulting testing procedures are evaluated via a simulation study that also includes comparisons with existing tests. Finally, a data set of Danish fire insurance claims is tested for positive quadrant dependence. The Canadian Journal of Statistics 41: 36–64; 2013 © 2012 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.