Canadian Journal of Statistics

Parallelism, uniqueness, and large‐sample asymptotics for the Dantzig selector

Journal Article

Abstract

The Dantzig selector (Candès & Tao, 2007) is a popular equation image‐regularization method for variable selection and estimation in linear regression. We present a very weak geometric condition on the observed predictors which is related to parallelism and, when satisfied, ensures the uniqueness of Dantzig selector estimators. The condition holds with probability 1, if the predictors are drawn from a continuous distribution. We discuss the necessity of this condition for uniqueness and also provide a closely related condition which ensures the uniqueness of lasso estimators (Tibshirani, 1996). Large sample asymptotics for the Dantzig selector, that is, almost sure convergence and the asymptotic distribution, follow directly from our uniqueness results and a continuity argument. The limiting distribution of the Dantzig selector is generally non‐normal. Though our asymptotic results require that the number of predictors is fixed (similar to Knight & Fu, 2000), our uniqueness results are valid for an arbitrary number of predictors and observations. The Canadian Journal of Statistics 41: 23–35; 2013 © 2012 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.