Journal of Time Series Analysis

Structural breaks in time series

Journal Article

This paper gives an account of some of the recent work on structural breaks in time series models. In particular, we show how procedures based on the popular cumulative sum, CUSUM, statistics can be modified to work also for data exhibiting serial dependence. Both structural breaks in the unconditional and conditional mean as well as in the variance and covariance/correlation structure are covered. CUSUM procedures are nonparametric by design. If the data allows for parametric modeling, we demonstrate how likelihood approaches may be utilized to recover structural breaks. The estimation of multiple structural breaks is discussed. Furthermore, we cover how one can disentangle structural breaks (in the mean and/or the variance) on one hand and long memory or unit roots on the other. Several new lines of research are briefly mentioned.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.