Canadian Journal of Statistics

Sequential design for computer experiments with a flexible Bayesian additive model

Journal Article


In computer experiments, a mathematical model implemented on a computer is used to represent complex physical phenomena. These models, known as computer simulators, enable experimental study of a virtual representation of the complex phenomena. Simulators can be thought of as complex functions that take many inputs and provide an output. Often these simulators are themselves expensive to compute, and may be approximated by “surrogate models” such as statistical regression models. In this paper we consider a new kind of surrogate model, a Bayesian ensemble of trees (Chipman, George, & McCulloch, 2010), with the specific goal of learning enough about the simulator that a particular feature of the simulator can be estimated. We focus on identifying the simulator's global minimum. Utilizing the Bayesian version of the expected improvement criterion (Jones, Schonlau, & Welch, 1998), we show that this ensemble is particularly effective when the simulator is ill‐behaved, exhibiting nonstationarity or abrupt changes in the response. A number of illustrations of the approach are given, including a tidal power application. The Canadian Journal of Statistics 40: 663–678; 2012 © 2012 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.