A mathematical theory of communication: Meaning, information, and topology

Journal Article


This article proposes a new mathematical theory of communication. The basic concepts of meaning and information are defined in terms of complex systems theory. Meaning of a message is defined as the attractor it generates in the receiving system; information is defined as the difference between a vector of expectation and one of perception. It can be sown that both concepts are determined by the topology of the receiving system. © 2010 Wiley Periodicals, Inc. Complexity 16: 10–26, 2011

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.