Generating signals with multiscale time irreversibility: The asymmetric weierstrass function

Journal Article

  • Author(s): Anton Burykin, Madalena D. Costa, Chung‐Kang Peng, Ary L. Goldberger, Timothy G. Buchman
  • Article first published online: 17 Aug 2010
  • DOI: 10.1002/cplx.20333
  • Read on Online Library
  • Subscribe to Journal


Time irreversibility (asymmetry with respect to time reversal) is an important property of many time series derived from processes in nature. Some time series (e.g., healthy heart rate dynamics) demonstrate even more complex, multiscale irreversibility, such that not only the original but also coarse‐grained time series are asymmetric over a wide range of scales. Several indices to quantify multiscale asymmetry have been introduced. However, there has been no simple generator of model time series with “tunable” multiscale asymmetry to test such indices. We introduce an asymmetric Weierstrass function WA (constructed from asymmetric sawtooth functions instead of cosine waves) that can be used to construct time series with any given value of the multiscale asymmetry. We show that multiscale asymmetry appears to be independent of other multiscale complexity indices, such as fractal dimension and multiscale entropy. We further generalize the concept of multiscale asymmetry by introducing time‐dependent (local) multiscale asymmetry and provide examples of such time series. The WA function combines two essential features of complex fluctuations, namely fractality (self‐similarity) and irreversibility (multiscale time asymmetry); moreover, each of these features can be tuned independently. The proposed family of functions can be used to compare and refine multiscale measures of time series asymmetry. © 2010 Wiley Periodicals, Inc. Complexity 16: 29‐38, 2011

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.