Risk Analysis

Confronting Deep Uncertainties in Risk Analysis

Journal Article

How can risk analysts help to improve policy and decision making when the correct probabilistic relation between alternative acts and their probable consequences is unknown? This practical challenge of risk management with model uncertainty arises in problems from preparing for climate change to managing emerging diseases to operating complex and hazardous facilities safely. We review constructive methods for robust and adaptive risk analysis under deep uncertainty. These methods are not yet as familiar to many risk analysts as older statistical and model‐based methods, such as the paradigm of identifying a single “best‐fitting” model and performing sensitivity analyses for its conclusions. They provide genuine breakthroughs for improving predictions and decisions when the correct model is highly uncertain. We demonstrate their potential by summarizing a variety of practical risk management applications.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.