Applied Stochastic Models in Business and Industry

How to choose the simulation model for computer experiments: a local approach

Journal Article

In many scientific areas, non‐stochastic simulation models such as finite element simulations replace real experiments. A common approach is to fit a meta‐model, for example a Gaussian process model, a radial basis function interpolation, or a kernel interpolation, to computer experiments conducted with the simulation model. This article deals with situations where more than one simulation model is available for the same real experiment, with none being the best over all possible input combinations. From fitted models for a real experiment as well as for computer experiments using the different simulation models, a criterion is derived to identify the locally best one. Applying this criterion to a number of design points allows the design space to be split into areas where the individual simulation models are locally superior. An example from sheet metal forming is analyzed, where three different simulation models are available. In this application and many similar problems, the new approach provides valuable assistance with the choice of the simulation model to be used. Copyright © 2011 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.