WIREs Computational Statistics

The Bayesian information criterion: background, derivation, and applications

Journal Article

Abstract

The Bayesian information criterion (BIC) is one of the most widely known and pervasively used tools in statistical model selection. Its popularity is derived from its computational simplicity and effective performance in many modeling frameworks, including Bayesian applications where prior distributions may be elusive. The criterion was derived by Schwarz (Ann Stat 1978, 6:461–464) to serve as an asymptotic approximation to a transformation of the Bayesian posterior probability of a candidate model. This article reviews the conceptual and theoretical foundations for BIC, and also discusses its properties and applications. WIREs Comput Stat 2012, 4:199–203. doi: 10.1002/wics.199

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.