Australian & New Zealand Journal of Statistics

CONFIDENCE INTERVALS FOR THE DIFFERENCE BETWEEN TWO PARTIAL AUCS

Journal Article

Summary

As new diagnostic tests are developed and marketed, it is very important to be able to compare the accuracy of a given two continuous‐scale diagnostic tests. An effective method to evaluate the difference between the diagnostic accuracy of two tests is to compare partial areas under the receiver operating characteristic curves (AUCs). In this paper, we review existing parametric methods. Then, we propose a new semiparametric method and a new nonparametric method to investigate the difference between two partial AUCs. For the difference between two partial AUCs under each method, we derive a normal approximation, define an empirical log‐likelihood ratio, and show that the empirical log‐likelihood ratio follows a scaled chi‐square distribution. We construct five confidence intervals for the difference based on normal approximation, bootstrap, and empirical likelihood methods. Finally, extensive simulation studies are conducted to compare the finite‐sample performances of these intervals, and a real example is used as an application of our recommended intervals. The simulation results indicate that the proposed hybrid bootstrap and empirical likelihood intervals outperform other existing intervals in most cases.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.