Australian & New Zealand Journal of Statistics

MODEL‐BASED DIRECT ESTIMATION OF SMALL‐AREA DISTRIBUTIONS

Journal Article

Summary

Much of the small‐area estimation literature focuses on population totals and means. However, users of survey data are often interested in the finite‐population distribution of a survey variable and in the measures (e.g. medians, quartiles, percentiles) that characterize the shape of this distribution at the small‐area level. In this paper we propose a model‐based direct estimator (MBDE, Chandra and Chambers) of the small‐area distribution function. The MBDE is defined as a weighted sum of sample data from the area of interest, with weights derived from the calibrated spline‐based estimate of the finite‐population distribution function introduced by Harms and Duchesne, under an appropriately specified regression model with random area effects. We also discuss the mean squared error estimation of the MBDE. Monte Carlo simulations based on both simulated and real data sets show that the proposed MBDE and its associated mean squared error estimator perform well when compared with alternative estimators of the area‐specific finite‐population distribution function.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.