Statistics in Medicine

An autoregressive linear mixed effects model for the analysis of longitudinal data which include dropouts and show profiles approaching asymptotes

Journal Article


We are interested in longitudinal data of a continuous response that show profiles with an initial sharp change and approaching asymptotes for each patient, and many patients drop out with a reason related to the response. In this paper, we focus on a model that assumes a dropout process is missing at random (MAR). In this dropout process, we can obtain consistent maximum likelihood estimators as long as both the mean and covariance structures are correctly specified. However, parsimonious covariance structures for the profiles approaching asymptotes are unclear. An autoregressive linear mixed effects model can express the profile with random individual asymptotes. We show that this model provides a new parsimonious covariance structure. The covariance structure at steady state is compound symmetry and the other elements of the covariance depend on the measurement points. In simulation studies, the estimate of the asymptote is unbiased in MAR dropouts, but biased in non‐ignorable dropouts. We also applied this model to actual schizophrenia trial data. Copyright © 2008 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.