Statistics in Medicine

Estimation of prediction error for survival models

Journal Article


When statistical models are used to predict the values of unobserved random variables, loss functions are often used to quantify the accuracy of a prediction. The expected loss over some specified set of occasions is called the prediction error. This paper considers the estimation of prediction error when regression models are used to predict survival times and discusses the use of these estimates. Extending the previous work, we consider both point and confidence interval estimations of prediction error, and allow for variable selection and model misspecification. Different estimators are compared in a simulation study for an absolute relative error loss function, and results indicate that cross‐validation procedures typically produce reliable point estimates and confidence intervals, whereas model‐based estimates are sensitive to model misspecification. Links between performance measures for point predictors and for predictive distributions of survival times are also discussed. The methodology is illustrated in a medical setting involving survival after treatment for disease. Copyright © 2009 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.