Statistics in Medicine

A Bayesian approach for estimating bioterror attacks from patient data

Journal Article


Terrorist attacks using an aerosolized pathogen have gained credibility as a national security concern after the anthrax attacks of 2001. Inferring some important details of the attack quickly, for example, the number of people infected, the time of infection, and a representative dose received can be crucial to planning a medical response. We use a Bayesian approach, based on a short time series of diagnosed patients, to estimate a joint probability density for these parameters. We first test the formulation with idealized cases and then apply it to realistic scenarios, including the Sverdlovsk anthrax outbreak of 1979. We also use simulated outbreaks to explore the impact of model error, as when the model used for generating simulated epidemic curves does not match the model subsequently used to characterize the attack. We find that in all cases except for the smallest attacks (fewer than 100 infected people), 3–5 days of data are sufficient to characterize the outbreak to a specificity that is useful for directing an emergency response. Copyright © 2010 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.