Estimating parameters for a stochastic dynamic marine ecological system

Journal Article


Parameter estimation for stochastic dynamic systems is a core problem for the environmental and ecological sciences. This study considers parameter estimation for a simple nonlinear numerical model of marine biogeochemistry. We present a nonlinear stochastic differential equation based model for estimating parameters from non‐Gaussian ocean measurements collected at a coastal ocean observatory. A sequential Monte Carlo procedure, or particle filter, provides for estimation of the time evolving state and also the basis for parameter estimation. Two approaches for estimating static parameters of the system are contrasted. The first is based on likelihood calculations, and the second on augmenting the system state with the static parameters. Sensitivity analysis identified two ecological parameters (in the differential equations model) and one statistical parameter (governing the level of dynamical noise) as candidates for estimation. Computed likelihood surfaces were found to be rough due to the sample based calculations; they also indicated the ubiquitous problem of ecological parameter dependence and identifiability. A modified state augmentation procedure, incorporating a smoothed bootstrap step, was used here for parameter estimation. Realizations for the parameter values provided by this method allowed for calculation of moments and density estimates that matched well the properties of the likelihood. Incorporation of prior information on the parameters was also considered within this context. It is concluded that such a modified state augmentation procedures provides a promising avenue in parameter estimation in numerical models. Copyright © 2011 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.