A two‐stage model for incidence and prevalence in point‐level spatial count data

Journal Article

We consider the problem of modeling point‐level spatial count data with a large number of zeros. We develop a model that is compatible with scientific assumptions about the underlying data‐generating process. We utilize a two‐stage spatial generalized linear mixed model framework for the counts, modeling incidence, resulting in 0–1 outcomes, and prevalence, resulting in positive counts, as separate but dependent processes and utilize a Gaussian process model for characterizing the underlying spatial dependence. We describe a Bayesian approach and study several variants of our two‐stage model. We fit the models via Markov chain Monte Carlo methods. We study several Markov chain Monte Carlo algorithms, including a version of the Langevin–Hastings algorithm, for exploring the complicated posterior distribution efficiently and recommend an algorithm that is fairly efficient. Finally, we demonstrate the application of our modeling and computational approach on both simulated data and real data from an ecological field survey. Copyright © 2011 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.