Canadian Journal of Statistics

Bayesian analysis of elapsed times in continuous‐time Markov chains

Journal Article


The authors consider Bayesian analysis for continuous‐time Markov chain models based on a conditional reference prior. For such models, inference of the elapsed time between chain observations depends heavily on the rate of decay of the prior as the elapsed time increases. Moreover, improper priors on the elapsed time may lead to improper posterior distributions. In addition, an infinitesimal rate matrix also characterizes this class of models. Experts often have good prior knowledge about the parameters of this matrix. The authors show that the use of a proper prior for the rate matrix parameters together with the conditional reference prior for the elapsed time yields a proper posterior distribution. The authors also demonstrate that, when compared to analyses based on priors previously proposed in the literature, a Bayesian analysis on the elapsed time based on the conditional reference prior possesses better frequentist properties. The type of prior thus represents a better default prior choice for estimation software.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.