Canadian Journal of Statistics

Two sample inference in functional linear models

Journal Article

Abstract

We propose a method of comparing two functional linear models in which explanatory variables are functions (curves) and responses can be either scalars or functions. In such models, the role of parameter vectors (or matrices) is played by integral operators acting on a function space. We test the null hypothesis that these operators are the same in two independent samples. The complexity of the test statistics increases as we move from scalar to functional responses and relax assumptions on the covariance structure of the regressors. They all, however, have an asymptotic chi‐squared distribution with the number of degrees of freedom which depends on a specific setting. The test statistics are readily computable using the R package fda, and have good finite sample properties. The test is applied to egg‐laying curves of Mediterranean flies and to data from terrestrial magnetic observatories. The Canadian Journal of Statistics © 2009 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.