Canadian Journal of Statistics

Smoothed empirical likelihood confidence intervals for the relative distribution with left‐truncated and right‐censored data

Journal Article

Abstract

The study of differences among groups is an interesting statistical topic in many applied fields. It is very common in this context to have data that are subject to mechanisms of loss of information, such as censoring and truncation. In the setting of a two‐sample problem with data subject to left truncation and right censoring, we develop an empirical likelihood method to do inference for the relative distribution. We obtain a nonparametric generalization of Wilks' theorem and construct nonparametric pointwise confidence intervals for the relative distribution. Finally, we analyse the coverage probability and length of these confidence intervals through a simulation study and illustrate their use with a real data set on gastric cancer. The Canadian Journal of Statistics 38: 453–473; 2010 © 2010 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.