Canadian Journal of Statistics

Bent‐cable regression with autoregressive noise

Journal Article

Abstract

Motivated by time series of atmospheric concentrations of certain pollutants the authors develop bent‐cable regression for autocorrelated errors. Bent‐cable regression extends the popular piecewise linear (broken‐stick) model, allowing for a smooth change region of any non‐negative width. Here the authors consider autoregressive noise added to a bent‐cable mean structure, with unknown regression and time series parameters. They develop asymptotic theory for conditional least‐squares estimation in a triangular array framework, wherein each segment of the bent cable contains an increasing number of observations while the autoregressive order remains constant as the sample size grows. They explore the theory in a simulation study, develop implementation details, apply the methodology to the motivating pollutant dataset, and provide a scientific interpretation of the bent‐cable change point not discussed previously. The Canadian Journal of Statistics 38: 386–407; 2010 © 2010 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.