Canadian Journal of Statistics

Robust penalized logistic regression with truncated loss functions

Journal Article

Abstract

The penalized logistic regression (PLR) is a powerful statistical tool for classification. It has been commonly used in many practical problems. Despite its success, since the loss function of the PLR is unbounded, resulting classifiers can be sensitive to outliers. To build more robust classifiers, we propose the robust PLR (RPLR) which uses truncated logistic loss functions, and suggest three schemes to estimate conditional class probabilities. Connections of the RPLR with some other existing work on robust logistic regression have been discussed. Our theoretical results indicate that the RPLR is Fisher consistent and more robust to outliers. Moreover, we develop estimated generalized approximate cross validation (EGACV) for the tuning parameter selection. Through numerical examples, we demonstrate that truncating the loss function indeed yields better performance in terms of classification accuracy and class probability estimation. The Canadian Journal of Statistics 39: 300–323; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.