Canadian Journal of Statistics

Self‐consistent estimation of mean response functions and their derivatives

Journal Article


Many methods have been developed for the nonparametric estimation of a mean response function, but most of these methods do not lend themselves to simultaneous estimation of the mean response function and its derivatives. Recovering derivatives is important for analyzing human growth data, studying physical systems described by differential equations, and characterizing nanoparticles from scattering data. In this article the authors propose a new compound estimator that synthesizes information from numerous pointwise estimators indexed by a discrete set. Unlike spline and kernel smooths, the compound estimator is infinitely differentiable; unlike local regression smooths, the compound estimator is self‐consistent in that its derivatives estimate the derivatives of the mean response function. The authors show that the compound estimator and its derivatives can attain essentially optimal convergence rates in consistency. The authors also provide a filtration and extrapolation enhancement for finite samples, and the authors assess the empirical performance of the compound estimator and its derivatives via a simulation study and an application to real data. The Canadian Journal of Statistics 39: 280–299; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.