Canadian Journal of Statistics

Bayesian model selection for D‐vine pair‐copula constructions

Journal Article

Abstract

In recent years analyses of dependence structures using copulas have become more popular than the standard correlation analysis. Starting from Aas et al. (2009) regular vine pair‐copula constructions (PCCs) are considered the most flexible class of multivariate copulas. PCCs are involved objects but (conditional) independence present in data can simplify and reduce them significantly. In this paper the authors detect (conditional) independence in a particular vine PCC model based on bivariate t copulas by deriving and implementing a reversible jump Markov chain Monte Carlo algorithm. However, the methodology is general and can be extended to any regular vine PCC and to all known bivariate copula families. The proposed approach considers model selection and estimation problems for PCCs simultaneously. The effectiveness of the developed algorithm is shown in simulations and its usefulness is illustrated in two real data applications. The Canadian Journal of Statistics 39: 239–258; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.