Canadian Journal of Statistics

Estimation of a semiparametric recursive bivariate probit model in the presence of endogeneity

Journal Article

Abstract

The classic recursive bivariate probit model is of particular interest to researchers since it allows for the estimation of the treatment effect that a binary endogenous variable has on a binary outcome in the presence of unobservables. In this article, the authors consider the semiparametric version of this model and introduce a model fitting procedure which permits to estimate reliably the parameters of a system of two binary outcomes with a binary endogenous regressor and smooth functions of continuous covariates. They illustrate the empirical validity of the proposal through an extensive simulation study. The approach is applied to data from a survey, conducted in Botswana, on the impact of education on women's fertility. Some studies suggest that the estimated effect could have been biased by the possible endogeneity arising because unobservable confounders (e.g., ability and motivation) are associated with both fertility and education. The Canadian Journal of Statistics 39: 259–279; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.