Canadian Journal of Statistics

Tuning the EM‐test for finite mixture models

Journal Article

Abstract

There has been rapid progress in developing effective and easy‐to‐use tests of the order of a finite mixture model. The EM‐test is the latest to join the rank. It has a relatively simple limiting distribution and enjoys broad applicability. Based on asymptotic theory, the P‐value of the EM‐test is approximated via its limiting distribution. The built‐in tuning parameter has an important influence on the approximation precision. Thus, choosing an appropriate value for this parameter is important for fully realizing the advantages of the EM‐test. In this article, we develop a novel computer‐experiment approach to address this issue. Through designed experiments, we derive a number of empirical formulas for the tuning parameter. Extensive validation simulation shows that these formulas work well in terms of providing accurate type I errors. The Canadian Journal of Statistics 39: 389–404; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.