Canadian Journal of Statistics

Semiparametric transformation models for multivariate panel count data with dependent observation process

Journal Article

Abstract

This article discusses regression analysis of multivariate panel count data in which the observation process may contain relevant information about or be related to the underlying recurrent event processes of interest. Such data occur if a recurrent event study involves several related types of recurrent events and the observation scheme or process may be subject‐specific. For the problem, a class of semiparametric transformation models is presented, which provides a great flexibility for modelling the effects of covariates on the recurrent event processes. For estimation of regression parameters, an estimating equation‐based inference procedure is developed and the asymptotic properties of the resulting estimates are established. Also the proposed approach is evaluated by simulation studies and applied to the data arising from a skin cancer chemoprevention trial. The Canadian Journal of Statistics 39: 458–474; 2011 © 2011 Statistical Society of Canada

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.