Identifiability of Causal Effects for Binary Variables with Baseline Data Missing Due to Death

Journal Article

Summary We discuss identifiability and estimation of causal effects of a treatment in subgroups defined by a covariate that is sometimes missing due to death, which is different from a problem with outcomes censored by death. Frangakis et al. (2007, Biometrics63, 641–662) proposed an approach for estimating the causal effects under a strong monotonicity (SM) assumption. In this article, we focus on identifiability of the joint distribution of the covariate, treatment and potential outcomes, show sufficient conditions for identifiability, and relax the SM assumption to monotonicity (M) and no‐interaction (NI) assumptions. We derive expectation–maximization algorithms for finding the maximum likelihood estimates of parameters of the joint distribution under different assumptions. Further we remove the M and NI assumptions, and prove that signs of the causal effects of a treatment in the subgroups are identifiable, which means that their bounds do not cover zero. We perform simulations and a sensitivity analysis to evaluate our approaches. Finally, we apply the approaches to the National Study on the Costs and Outcomes of Trauma Centers data, which are also analyzed by Frangakis et al. (2007) and Xie and Murphy (2007, Biometrics63, 655–658).

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.