A Powerful and Robust Test Statistic for Randomization Inference in Group‐Randomized Trials with Matched Pairs of Groups

Journal Article

Summary For group‐randomized trials, randomization inference based on rank statistics provides robust, exact inference against nonnormal distributions. However, in a matched‐pair design, the currently available rank‐based statistics lose significant power compared to normal linear mixed model (LMM) test statistics when the LMM is true. In this article, we investigate and develop an optimal test statistic over all statistics in the form of the weighted sum of signed Mann‐Whitney‐Wilcoxon statistics under certain assumptions. This test is almost as powerful as the LMM even when the LMM is true, but it is much more powerful for heavy tailed distributions. A simulation study is conducted to examine the power.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.