Biometrics

Robust Estimation of Mean and Dispersion Functions in Extended Generalized Additive Models

Journal Article

Summary Generalized linear models are a widely used method to obtain parametric estimates for the mean function. They have been further extended to allow the relationship between the mean function and the covariates to be more flexible via generalized additive models. However, the fixed variance structure can in many cases be too restrictive. The extended quasilikelihood (EQL) framework allows for estimation of both the mean and the dispersion/variance as functions of covariates. As for other maximum likelihood methods though, EQL estimates are not resistant to outliers: we need methods to obtain robust estimates for both the mean and the dispersion function. In this article, we obtain functional estimates for the mean and the dispersion that are both robust and smooth. The performance of the proposed method is illustrated via a simulation study and some real data examples.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.