Applied Stochastic Models in Business and Industry

Application in stochastic volatility models of nonlinear regression with stochastic design

Journal Article


In regression model with stochastic design, the observations have been primarily treated as a simple random sample from a bivariate distribution. It is of enormous practical significance to generalize the situation to stochastic processes. In this paper, estimation and hypothesis testing problems in stochastic volatility model are considered, when the volatility depends on a nonlinear function of the state variable of other stochastic process, but the correlation coefficient |ρ|≠±1. The methods are applied to estimate the volatility of stock returns from Shanghai stock exchange. Copyright © 2009 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.