Applied Stochastic Models in Business and Industry

Robust optimization for multiple responses using response surface methodology

Journal Article


Typically in the analysis of industrial data for product/process optimization, there are many response variables that are under investigation at the same time. Robustness is also an important concept in industrial optimization. Here, robustness means that the responses are not sensitive to the small changes of the input variables. However, most of the recent work in industrial optimization has not dealt with robustness, and most practitioners follow up optimization calculations without consideration for robustness. This paper presents a strategy for dealing with robustness and optimization simultaneously for multiple responses. In this paper, we propose a robustness desirability function distinguished from the optimization desirability function and also propose an overall desirability function approach, which makes balance between robustness and optimization for multiple response problems. Simplex search method is used to search for the most robust optimal point in the feasible operating region. Finally, the proposed strategy is illustrated with an example from the literature. Copyright © 2009 John Wiley & Sons, Ltd.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.