Journal of the Royal Statistical Society: Series A (Statistics in Society)

On future household structure

Journal Article

Summary.  We develop a method for computing probabilistic household forecasts which quantifies uncertainty in the future number of households of various types in a country. A probabilistic household forecast helps policy makers, planners and other forecast users in the fields of housing, energy, social security etc. in taking appropriate decisions, because some household variables are more uncertain than others. Deterministic forecasts traditionally do not quantify uncertainty. We apply the method to data from Norway. We find that predictions of future numbers of married couples, cohabiting couples and one‐person households are more certain than those of lone parents and other private households. Our method builds on an existing method for computing probabilistic population forecasts, combining such a forecast with a random breakdown of the population according to household position (single, cohabiting, living with a spouse, living alone etc.). In this application, uncertainty in the total numbers of households of different types derives primarily from random shares, rather than uncertain future population size. A similar method could be applied to obtain probabilistic forecasts for other divisions of the population, such as household size, health or disability status, region of residence and labour market status.

Related Topics

Related Publications

Related Content

Site Footer


This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.