Journal of the Royal Statistical Society: Series C (Applied Statistics)

Bayesian quantile regression for count data with application to environmental epidemiology

Journal Article

Summary.  Quantile regression estimates the relationship between covariates and the τth quantile of the response distribution, rather than the mean. We present a Bayesian quantile regression model for count data and apply it in the field of environmental epidemiology, which is an area in which quantile regression is yet to be used. Our methods are applied to a new study of the relationship between long‐term exposure to air pollution and respiratory hospital admissions in Scotland. We observe a decreasing relationship between pollution and the τth quantile of the response distribution, with a relative risk ranging between 1.023 and 1.070.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.