Journal of the Royal Statistical Society: Series C (Applied Statistics)

Workload portfolio optimization for virtualized computer systems based on semiparametric quantile function estimation

Journal Article

Summary.  The latest technologies of server virtualization allow multiple computer workloads to share the same physical system dynamically while protecting them from interference from each other. Consolidation of workloads from stand‐alone systems into virtualized systems requires accurate capacity sizing and optimal portfolio design to maximize the benefit of virtualization. This requirement often translates into a demand for accurate estimation of high quantiles from a limited amount of data for hundreds of workloads with diverse statistical characteristics. To deal with the problem, a semiparametric method of quantile function estimation is considered. The method employs the generalized Pareto distribution to model the high quantiles that exceed a certain threshold and retains the sample quantiles below the threshold. An automatic procedure is proposed for adaptive threshold and estimator selection and for adaptive data trimming. A simulation study shows that the procedure proposed is superior to the non‐parametric sample quantile method for a variety of distributions. The procedure is applied to a portfolio optimization problem for computer workload consolidation with real data.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.