Journal of the Royal Statistical Society: Series C (Applied Statistics)

Percentile‐based empirical distribution function estimates for performance evaluation of healthcare providers

Journal Article

Summary.  Hierarchical models are widely used to characterize the performance of individual healthcare providers. However, little attention has been devoted to systemwide performance evaluations, the goals of which include identifying extreme (e.g. the top 10%) provider performance and developing statistical benchmarks to define high quality care. Obtaining optimal estimates of these quantities requires estimating the empirical distribution function (EDF) of provider‐specific parameters that generate the data set under consideration. However, the difficulty of obtaining uncertainty bounds for a squared error loss minimizing EDF estimate has hindered its use in systemwide performance evaluations. We therefore develop and study a percentile‐based EDF estimate for univariate provider‐specific parameters. We compute order statistics of samples drawn from the posterior distribution of provider‐specific parameters to obtain relevant assessments of uncertainty of an EDF estimate and its features, such as thresholds and percentiles. We apply our method to data from the Medicare end stage renal disease programme, which is a health insurance programme for people with irreversible kidney failure. We highlight the risk of misclassifying providers as exceptionally good or poor performers when uncertainty in statistical benchmark estimates is ignored. Given the high stakes of performance evaluations, statistical benchmarks should be accompanied by precision estimates.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.