Journal of Time Series Analysis

A numerical method for factorizing the rational spectral density matrix

Journal Article

Improving Rozanov (1967, Stationary Random Processes. San Francisco: Holden‐day.)’s algebraic‐analytic solution to the canonical factorization problem of the rational spectral density matrix, this article presents a feasible computational procedure for the spectral factorization. We provide numerical comparisons of our procedure with the Bhansali's (1974, Journal of the Statistical Society, B36, 61.) and Wilson's (1972 SIAM Journal on Applied Mathematics, 23, 420) methods and illustrate its application in estimation of invertible MA representation. The proposed procedure is usefully applied to linear predictor construction, causality analysis and other problems where a canonical transfer function specification of a stationary process in question is required.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.