Journal of Time Series Analysis

Subsampling inference for the mean of heavy‐tailed long‐memory time series

Journal Article

In this article, we revisit a time series model introduced by MCElroy and Politis (2007a) and generalize it in several ways to encompass a wider class of stationary, nonlinear, heavy‐tailed time series with long memory. The joint asymptotic distribution for the sample mean and sample variance under the extended model is derived; the associated convergence rates are found to depend crucially on the tail thickness and long memory parameter. A self‐normalized sample mean that concurrently captures the tail and memory behaviour, is defined. Its asymptotic distribution is approximated by subsampling without the knowledge of tail or/and memory parameters; a result of independent interest regarding subsampling consistency for certain long‐range dependent processes is provided. The subsampling‐based confidence intervals for the process mean are shown to have good empirical coverage rates in a simulation study. The influence of block size on the coverage and the performance of a data‐driven rule for block size selection are assessed. The methodology is further applied to the series of packet‐counts from ethernet traffic traces.

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.