Statistical Analysis and Data Mining

Discovery of anomalous spatio‐temporal windows using discretized spatio‐temporal scan statistics

Journal Article

Abstract

In this paper, we address the discovery of anomalous spatio‐temporal windows using discretized spatio‐temporal scan (DSTS) Statistics. Anomalous spatio‐temporal window discovery is required in several key applications such as disease outbreaks in a region over a period of time, monitoring drinking water quality over time, identifying health risks to the population in a polluted region and urbanization patterns in a city, to name a few. In this paper, we address the issues arising out of the simultaneous effects of the properties of space and time in the discovery of anomalous windows. In such a framework, we identify (i) at what point in time the window changes, (ii) the spatial patterns of change over time, and (iii) a spatial extent in time which is completely or partially deviant with respect to the rest of the anomalous spatio‐temporal windows. None of the current approaches address all these issues in combination. We identify this knowledge keeping in mind the spatial and temporal autocorrelation, morphing shape of the window, and possible spatial or temporal discontinuities of the window. Subsequently, we perform experiments on several real‐world datasets, to validate our approach, while comparing with the established approaches. © 2011 Wiley Periodicals, Inc. Statistical Analysis and Data Mining 2011

Related Topics

Related Publications

Related Content

Site Footer

Address:

This website is provided by John Wiley & Sons Limited, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ (Company No: 00641132, VAT No: 376766987)

Published features on StatisticsViews.com are checked for statistical accuracy by a panel from the European Network for Business and Industrial Statistics (ENBIS)   to whom Wiley and StatisticsViews.com express their gratitude. This panel are: Ron Kenett, David Steinberg, Shirley Coleman, Irena Ograjenšek, Fabrizio Ruggeri, Rainer Göb, Philippe Castagliola, Xavier Tort-Martorell, Bart De Ketelaere, Antonio Pievatolo, Martina Vandebroek, Lance Mitchell, Gilbert Saporta, Helmut Waldl and Stelios Psarakis.